Course
You will find below material and schedule for Deep Learning: A Mathematical Introduction being discussed at TIFR-CAM, Bangalore, in the Fall of 2024. This will evolve as the discussion progress.
Syllabus & Schedule
Wk | Dt | Topics | Resources |
---|---|---|---|
01 | 07-Sep | 1. Course Intro 2. FFNs |
L01 |
02 | tbd | 1. CNNs Intro 2. Lab 3. Architectures |
L02 |
03 | 21-Sep | 1. KAN (with Splines) 2. Nonparametric Regression 2. KAN Variants |
L03 |
04 | 24-Oct | 1. RNNs 2. Lab |
L04 |
05 | 16-Nov | 1. Transformers 2. Lab |
L05 |
06 | 14-Dec | 1. State Space Models 2. Lab |
L06 |
References
- [course] CS6910, Prof. Mitesh Khapra’s CS6910 Deep Learning at IIT-M
- [course] CS236 Prof. Stefano Emron’s course on Deep Generative Modeling at Stanford Fall’23
- [Book] Deep Generative Modeling, Jakub Tomxzak
- [Book] Understanding Deep Learning, Simon Prince
- [Book] Deep Learning, Ian Goodfellow and Yoshua Bengio and Aaron Courville
References
- R01: CS6910: Deep Learning Prof. Mitesh Khapra @ IIT Madras
- R02: CS7015: Deep Learning Prof. Mitesh Khapra @ IIT Madras(earlier version of CS6910)
- R03: LING 574: Deep Learning for NLP Prof. Shane Steinert-Threlkeld @ University of Washington
- R04: Dive into Deep Learning Alex Smola et al
- R05: Understanding Deep Learning Prof. Simon Prince
- R06: Neural Networks and Deep Learning Michael Nielsen
- R07: Deep Learning for Computer Vision NPTEL course by Prof. Vineeth N Balasubramanian
- R08: CS236 Prof. Stefano Emron’s course on Deep Generative Modeling at Stanford Fall’23
- R09: Deep Generative Modeling, Jakub Tomxzak
- R10 Deep Learning, Ian Goodfellow and Yoshua Bengio and Aaron Courville
Soma S Dhavala
Discussion Anchor