Course

You will find below material and schedule for Deep Learning: A Mathematical Introduction being discussed at TIFR-CAM, Bangalore, in the Fall of 2024. This will evolve as the discussion progress.

Syllabus & Schedule

Part-1: Deep Learning Models
Wk Dt Topics Resources
01 07-Sep 1. Course Intro
2. FFNs
L01
02 tbd 1. CNNs Intro
2. Lab
3. Architectures
L02
03 21-Sep 1. KAN (with Splines)
2. Nonparametric Regression
2. KAN Variants
L03
04 24-Oct 1. RNNs
2. Lab
L04
05 16-Nov 1. Transformers
2. Lab
L05
06 14-Dec 1. State Space Models
2. Lab
L06

References

  1. [course] CS6910, Prof. Mitesh Khapra’s CS6910 Deep Learning at IIT-M
  2. [course] CS236 Prof. Stefano Emron’s course on Deep Generative Modeling at Stanford Fall’23
  3. [Book] Deep Generative Modeling, Jakub Tomxzak
  4. [Book] Understanding Deep Learning, Simon Prince
  5. [Book] Deep Learning, Ian Goodfellow and Yoshua Bengio and Aaron Courville

References

Soma S Dhavala
Discussion Anchor