

OSS Stack for ML

Soma S. Dhavala 01-01-2025

@TheSaddlePoint

github.com/mlsquare

linkedin.com/in/**somasdhavala**

@TheSaddlePoint

Agenda

What should an OSS Stack to build ML look like?

Part-0: Framing MLOps Part-1: OSS for ML Engineering Part-2: OSS for ML Science Part-3: OSS model for ML Development

ML team highest accuracy

Sales sells more ads

Product fastest inference

Manager maximizes profit = laying off ML teams

= taying on ML tear

Expectation

Software 1.0 vs Software 2.0

ML as a software is a *fundamentally* different beast.

	Software 1.0	Software 2.0
Codified in	Formal Language	Weights & Biases (parameters)
Developed by	Programming	Training
Specification	PRD/SRD	Data
Behaviour	Deterministic	Stochastic
	Provably correct	Provably wrong
	Debuggable	Hard to Debug
	Verifiable	Hard to verify
	Explainable	Hard to explain
	Fixable	Hard to fix
	Idempotent	Hard to reproduce

Determinism and Control (of the build process and products) - we take them for granted. But no longer.

Think systems, not models. Think modeling, not models. Combating this intellectual inertia is hard.

source: CS329S @ Stanford

Semi-orthogonal sub-fields.

anything changes > everything changes modeling is highly iterative and nonlinear

source: ml-ops.org

Non-deterministic systems Build must be agile and address ambiguity

Design must address "reliability" in the presence of "uncertainty"

IF CS = DS + A THEN ML = ?

need an abstraction for Models and Modeling

"ML modeling" is a DAG

TensorFlow: Data Flow Model to writing programs

DAGs

A DAG (Directed Acyclic Graph) is the core concept of Airflow, collecting Tasks together, organized with dependencies and relationships to say how they should run.

Here's a basic example DAG:

Branch

You can express parallel steps with a branch. In the figure below, start transitions to two parallel steps, a and b. Any number of parallel steps are allowed. A benefit of a branch like this is performance: Metaflow can execute a and b over multiple CPU cores or over multiple instances in the cloud.

from metaflow import FlowSpec, step class BranchFlow(FlowSpec): @step def start(self): self.next(self.a, self.b) @step def a(self): self.x = 1self.next(self.join) @step def b(self): self.x = 2self.next(self.join) @step def join(self, inputs): print('a is %s' % inputs.a.x) print('b is %s' % inputs.b.x) print('total is %d' % sum(input.x for input in inputs)) self.next(self.end) @step def end(self): pass if __name__ == '__main__': BranchFlow()

source: metaflow.org

Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular. You can find out more at <u>kedro.org</u>.

Kedro is an open-source Python framework hosted by the <u>LF AI & Data</u> Foundation.

OSS for ML Engineering

(Lot of) Hidden Tech Debt

3. Model Deployment

- Tech stacks could be different.
- Dev and Prod env could be different.
- Scalability could be an issue!
- Most importantly, skill sets could be different

Automate and Delegate the responsibility to Tools

Layer	Promise	Task	Tool
Solution	Reproducibility	Versioning - Data, Code, Model	DVC, Kedro,mlflow, MetaFlow
	Observibility	Logging Monitoring Tracking	Kedro/mlflow, MetaFlow evidently WandB
	Agility	EDA Experiment Tracking	Notebook environment (<u>Kedro</u> , <u>MetaFlow</u>) <u>mlflow</u> , <u>Weights and Biases</u>
	CI/CD	Integrate Deploy Serve	git-actions docker/ Kedro/ mlflow FastAPI
Docs	Truthful/ Up to date	Code Data Solution	<u>quarto</u> / <u>sphinx</u>
Code	Testability Readability	Linting Testing Documentation	ruff/ black pytest quarto/ sphinx
Data	Veracity	Drift Detection and Schema Validation	pymfe/ pydantic/ evidently/ greatexpectations
		ETL Feature Stores	airflow feast
	Agility Auditability	Data Lake	minio/ s3 + athena Kedro Data Catalogues
Compute	Scalability	Elastic Compute	<u>k8s</u>

Quite a number of OSS tools available to address specific gaps, with overlaps

ML POD: ML Engineering

An (opinionated) git template with integrations enabled

OSS for ML Science

Performance-centric ML developement

But what is an enabling technology that addresses these sub-orthogonal fields?

inputs	layers	losses	optimizers	runtime	outputs
Text	Dense	CE	Adam	cpu	Text
Speech	Conv	MSE	RMSProp	gpu	Speech
Image	GRU	MAE	NeverGrad	tpu	Image
Numerical	Attention	• •	• • •	-	Numeric
Fixed	Merge	CheckLo	PSO		
Variable	-	SS			Fixed
	LDA/QDA	Hinge			Variabl
Single		Ordinal			e
Many	DT				
-	FM				Single
					Many
	Kernels				

Deep Learning as a technology breaks monolithic scientific computing paradigm. It is OOPs for scientific computing at large.

ML Engineering Backbone

Scalable computation of gradients is at the heart of modern Deep Learning Engineering

ML Science Backbone

Perhaps, the answer is in IHVP

for more see: Project DEEL

Promise	Methods	Tool
Statistical Reliability	Conformal Prediction Techniques Learn-Then-Test Framework	torchcp, mapie, puncc
OOD	RMD, Entropy, Clustering	<u>pytorch-ood, oodeel</u>
Security	Adversarial Attacks	<u>foolbox</u>
Explainability	Integrated Gradients SHAPLEY values, LIME, Decision Sets, Influence Functions Counterfactuals	<u>shap, xplique, dice</u>
Bias and Fairness	Metrics (for detection) and Methods (to mitigate) Influence Functions	<u>AI Fairness 360, influentiate</u>
Robustness	Adversarial Training Robust Losses Regulaization	All of above

OOD, Robustness, Security, XIA, Bias & Fairness – share common principles!

Expectation

Make ML great again :)