fedem.utils package

Submodules

fedem.utils.huggingface module

fedem.utils.huggingface.get_client_details(hf_token: str | None = None) tuple[source]

Get the client details from the Hugging Face API.

Parameters:

hf_token (str, optional) – The Hugging Face API token. Defaults to None.

Returns:

The Hugging Face API client and the user details.

Return type:

tuple | None

fedem.utils.huggingface.verify_user_with_org(client_details: dict, org_id: str, access_level: list = ['contributor']) dict[source]

Verify if the user is part of the organization.

Parameters:
  • client_details (dict) – The client details.

  • org_id (str) – The organization id.

Returns:

The org details if the user is part of the organization, else None.

Return type:

dict | None

Module contents

fedem.utils.get_checkpoint_model(model_name)[source]

Get the checkpoint model based on the model name and organization ID.

Parameters:

model_name (str) – Name of the model.

Returns:

Model ID if found, False otherwise.

Return type:

str | bool

fedem.utils.load_data(data_path)[source]

Load dataset from a given path and split it into train and validation sets.

Parameters:

data_path (str) – Path to the dataset.

Returns:

Dictionary containing train and validation datasets.

Return type:

DatasetDict

fedem.utils.load_json(json_path)[source]

Load JSON data from a file.

Parameters:

json_path (str) – Path to the JSON file.

Returns:

Loaded JSON data.

Return type:

dict

fedem.utils.load_model(config)[source]

Load a model based on the provided configuration.

Parameters:

config – Model configuration.

Returns:

Loaded model.

Return type:

MambaForCausalLM

fedem.utils.load_model_pretrained(config)[source]

Load a pre-trained model based on the provided configuration.

Parameters:

config – Model configuration.

Returns:

Loaded pre-trained model.

Return type:

MambaForCausalLM

fedem.utils.load_model_with_LoRA(model, target_modules, local_path)[source]

Load a model with LoRA (Low-Rank Adaptation) applied.

Parameters:
  • model – Base model to apply LoRA to.

  • target_modules – List of target modules.

  • local_path (str) – Local path to save the adapter.

Returns:

Model with LoRA applied.

Return type:

MambaForCausalLM

fedem.utils.load_tokenizer(path)[source]

Load tokenizer from a given path.

Parameters:

path (str) – Path to the tokenizer.

Returns:

Loaded tokenizer.

Return type:

AutoTokenizer

fedem.utils.make_config(json)[source]

Make Config

fedem.utils.print_trainable_parameters(model)[source]

Print the number of trainable parameters in the model.

Parameters:

model – Model to print trainable parameters for.

fedem.utils.split_data(data)[source]

Split dataset into train and validation sets.

Parameters:

data (Dataset) – Dataset to split.

Returns:

Dictionary containing train and validation datasets.

Return type:

DatasetDict