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TECHNOLOGY: Al Platform Enablement

INDUSTRY: Insurance/PRT/Benefits

Scribble Data:

We are committed to catalyzing a transformative
journey for insurers, empowering them to thrive in
the face of change.
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Al Assistants
P

Broker Query A .
Assistant Pricing Assistant

B — @) @) @) 0O

Market . .
Intelligence RFP Assistant B'd/.No Bid

: Assistant
Assistant

* Throughout 30 year plan administration phase

Win
GAC
Assistant
Onboarding
Assistant

Annuitant ) )
Engagement Life _Audlt
Assistant Assistant

.

7

True-up Assistant

b

7

Monitoring
Assistant

Asset Valuation
Assistant

.



a®

@ How Did We Get to 2024



Evolution of Scribble and Domain
P

Google/Facebook/Others
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splice @GFeasT

V2 Implementations i |8

Mainly internal platforms, Tecton, Feast,

not publicly discussed, Hopsworks, Scribble,

Some early platforms Splice, Kaskada,
Molecula
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<2017

2017
2019

Uber’s Michelangelo

Broad platform
including Palette, Uber
feature store

V3 Start

ML cooling off,
consolidation of
platforms, Shrinking
teams, ChatGPT

2021 2025
2023 I

Hype & Correction

Everybody wants to
build ML Platform

Al Applications

DL models, explosion of
document processing



Original Sin: Projection

ONLINE

Uber’s Michelangelo Platform

https://eng.uber.com/michelangelo-machine-learning-platform/




Large Design Space - No One-size Fits Al

Simple organizations
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Simple Linear Flows are Misleading

f

Feature Model Dev & Model
Engineering Management Deployment

A A A

Process Feature Train Model Prod
aw o o (9 () M Deploy >
Rew Dnea Data Store Models Store = Py Serving

Simple but wrong model from Gojek, 2019 ®

https://databricks.com/session/scaling-ride-hailing-with-machine-learning-on-miflow
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it is Complex and Iterative Process

/
e Expensive, error prone activity e Mg:"mt Monitoring
) ) Configuration || Data Collection sliaal Senvin

e Complex implementations Fuw— inastucire

1 1 Feature rocess
e [terative and evolutionary Extracton s
e Growing need
e High impact on correctness Cost/Model

Time

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf 10




Example: Coupon Delivery Pipelines

f

Profile

e Can be broad and deep

Segment

e Continuous change Targets

. : L] Iidentification
e Compute Intensive |

Source —
e Long execution times : B L]
: | ]

e High volume of data _ — Coupon
Source — Response

e Txns, emails, reviews

Sample: 50GB/day, 2M customers, 200 features, 10 pipelines, 4 hours
execution time
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Variations Possible at Every Step

Algorithm Flow semantic
Data scgle, behavior, dependencies
semantics, - trade offs, A Consumers
quality,history, accuracy L nature, risk,
availability ‘ sharing
) |
| Models
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Lessons: Trust Is Table Stakes

system?

O

/
. Nature Offering Function
Can we bet a business KPI on the
Extraction Galileo Al observability
. - . correctness
Accuracy, reliability, security,
Data Drift/ Arize, Abacus Al | Notice structural

safety, legality

Our learnings:

O

O

Trust is end-to-end

High degree of control (limited
use of auto*)

Deep semantic checks
Auditability/ GDPR

Observability

changes and act

Data Quality/

Monte Carlo,

Expectations

Correctness SODA

Data Leaks/ Tecton Point in time
Poisoning values
Reproducibility/ | Scribble Deep

Deep Metadata instrumentation
Compliance Konfer Validate process
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Lessons: Efficiency Required for Effective Delivery

What is the time to value?

Stakeholder buying required through lifecycle
10x time in RCA than dev

Lessons learnt

(@)

(@)

More usecases than bandwidth available
Reproducibility critical for RCA,
checkpointing is plus

Dense code, deep auditability required

Conditional execution of transforms

®
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Nature Offering Function

Frameworks LangChain Application
structure

Development | Feast SQL-like*

Solutioning Scribble Full-stack

Realtime Tecton Abstractions

Integration Clouds Platform

Error Gantry Understand

Propagation dependencies

Knowledge Molecula Domain focus
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Lessons: Flexibility Required for Value

el

Will it fit into my context?
Incorporate newer information
Complexity due to org, tech stack,
usecases, change
Scale, cost, flexibility - Choose two
Lessons learnt

o Fewer assumptions about access,

skill etc
o Support multiple customers/

products/ workflows

Nature Offering Function

Low-level Opensource | Customize to need

tooling

Fast Vercel Speed to

Deployment experience value

Distributed Featureform | Reduce friction to

development dev. Unified
abstraction

Data Products Full-stack Al Engg, Al call

solutions center agent

15




@ scribble’s Own Approach




Chosen Scope of Problems

e

Regulated, mid-large fintech experience (payments, insurance etc)
o High risk/low trust

Internal facing use cases
o Cooperative users (not adversarial)
o Highly skilled individuals

Controlled automation, full-stack
o Human-supervision
o Incremental integration into existing workflows
o Short time to deploy

Small to mid volume
o Extraction, computational contracts, occasional ML
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Chosen Approach
Pt

e Focus on speed
o  Simplify, simplify, simplify
o Flexible lego-like system to rapidly assemble apps
o Rapid recovery and rollout/rollback/backfill

e Full-stack
o No dependencies and therefore speed
o Integrations to be part of workflow

e Deep auditability and reproducibility
o Audit every step of the way
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Assistants are Task-Specific

A A A A

| |

e Task specificity required for multiple reasons - adoption, feasibility, cost etc
e Performance has to cross a threshold for adoption

o Accuracy, timing, auditability, completeness etc
o Content and aesthetics are both important

e High value tasks are also tricky - deep domain knowledge, complex
experiences etc
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Hasper Task Blade
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Vector Store Vector Store Ctx Store
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Takeaways from Our Experience

=

Agents/Assistants’ economics is real. Here to stay
Shelf-life of any idea/system is short and shrinking
o  Fast build, fast evolution. Keep it simple
o  Build composable/lego-like system
Decision makers and users are increasingly non-technical
o Be usecase and value driven - Avoid trap of MLOps/MDS
o  Should be usable/valuable even with partial answers
Collaboration with users is crucial
o  You can simplify/reframe hard problem
Complex dynamics because jobs/reputation is involved
Applications structure: No pure agents
o 20% of work is LLM, 80% is software
o Hallucination is real, not going away
o  Check for integrity/accuracy every step of the way

o  More DAGs than agentic world
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Hasper System Components Q)
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Hasper System Architecture
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