Saturday, 15 Nov | Online

Al Data Labeling: The Bottleneck in Al

Development

Puneet Jindal Founder & CEO, Labellerr

01	Post					
queries in						

. the chat

I'll address them as we go or at the end

02 Keep

On

Cameras

for better engagement 03 Ask

questions

stay focused on today's topic

04 Stay

on Mute

Unmute only when speaking to minimize background noise.

"

Ŀ

You've got to start with the customer experience and work backward to the technology. You can't start with the technology then try to figure out where to sell it.

- Steve Jobs

CEO, Apple

The Key Insights!

Al projects failure

Its important to deliver ROI

90%

Unstructured data

Such as images, videos, audio,

etc

Labellerr in 2024: Serving Diverse AI Needs

Large Enterprises

• Toyota Research Institute (*Robotics Learning*)

Innovative Startups

- SpotAl (Surveillance)
- Spare-it (Waste Management)
- Mythos AI (Self-driving)
- Wadhwani Al

Leading Academic Institutions

- University of Maryland
- Baylor College of Medicine
- Stanford University (Ecology)

Robotic Learning case - Boston Dynamics and Toyota Research Institute

https://vimeo.com/1023820181

CCTV based Surveillance case - SpotAl

Waste Intelligence Platform

Monitor

Discover

Transform

Reduce and Report (API)

Encourage

circularity

Reduce carbon footprint A

Automatic reporting

Example1:

In this simple example a picture is taken from a "metal" bin from a customer in Hong Kong, 5 items have been identified.

- 1) 4 metal cans
- 2) 1 tissue

The tissue is a contaminant in the "metal" waste stream. The contamination from this photo is estimated to ½ = 20%.

Example2:

In this simple example a picture is taken from a "plastic" bin from a customer in Hong Kong, 7 items have been identified.

- 1) 3 other plastics
- 2) 1 snack chips bag
- 1) 1 compostable hot cup
- 2) 1 cardboard
- 3) 1 beverage carton

The beverage-carton, compostable-hot-cup and cardboard are contaminants in the "plastic" waste stream. The contamination from this photo is estimated to 3/7 = 42.9%.

Taking an example of a computer vision - waste contamination tracking

Name ~	Id \checkmark	Material Class	~	Signage Illustration \lor	Sample Pictures (from \vee	Visual Description
Paper Towel/Napkins/Tissue/Tissue Paper	24	Compostables				Thin low quality paper More textured than printer paper, may have food stains
Wooden Coffee Stirrer or Utensil or Cho	25	Compostables		VII	N 🔊 //	Wooden stick like a popsicle stick or wooden cutlery or wooden chopsticks or
Soiled Cardboard Box	26	Compostables		2		Cardboard with food or water staining, usually pizza boxes
Compostable Plastic Lid	27	Compostables		۲	SS S	clear plastic lid, adjacent to a compostable container, usually paired with comp
Food Soiled Paper	30	Compostables		A 1	🏔 🎽 🥽 🕍 👔	Paper with food or grease staining - this DOES NOT include compostable or tra
Other compostable material	125	Compostables				Compostable bags, biodegradable packing peanuts
Sandwich paper wrapper	126	Compostables		1	ST 🖉 🕅 👔	Paper used to wrap sandwich, can be soiled; compostable
Batteries	38	E-waste			se 🚿 🔝	batteries
Cables	40	E-waste		8		Wire taht will tangle, usually connected to electronics, looks like phone charge
Computers	43	E-waste				computer
Monitors	44	E-waste				monitor
Toner and Ink Cartridges	45	E-waste		2		black plastic container holding ink or toner from a printer
Miscellaneous Electronics	46	E-waste		<i>:</i>		anything else electronic
LED Lightbulb	47	E-waste				Lightbulb, but with electronic components. Usually frosted
Meat and Fish	48	Food Waste		5		any meat
Bones and Shells	49	Food Waste		*		animal bone
Cheese and Other Fats	50	Food Waste		4		Cheese or grease
Fruits And Veggies	51	Food Waste			🚺 🏍 🛔 🐼 🕅	Fruit of any kind
Other Food or Mixed Food	52	Food Waste				

Annotation Guidelines

Demo of manual annotation on Labellerr

Overview of the Life Cycle

Use a mix of automated QA and manual review to maintain data integrity.

Quality Assurance

Step 4

Feedback Loop

Step 5

Implement feedback mechanisms for continuous improvement of annotations.

Common Pitfalls in data Labeling

1. "Labeling is just about drawing boxes or polygons."

Labeling requires nuanced understanding beyond simple shapes; accurate annotations depend on context, clarity, and adherence to specific guidelines.

2. "Basic guidelines in a document are enough for high-quality annotations."

While initial guidelines are essential, ongoing clarification, regular updates, and interactive feedback are key to consistent quality across complex projects.

3. "Training annotators once ensures perfect quality."

Continuous training and periodic quality checks are necessary, especially as task complexity and annotator expertise vary, impacting annotation quality.

4. "Volume spikes can be handled instantly with increased speed."

Scaling up annotations quickly can compromise quality, as larger volumes require more robust management, including quality control and oversight mechanisms.

5. "Once accuracy is achieved, annotation can run on autopilot."

Consistent supervision and iterative quality checks are needed to maintain standards, as even well-performing pipelines may need adjustments over time.

6. "Data should be clean by default."

Raw data frequently includes noise, ambiguities, and unexpected complexities that need to be addressed through pre-processing and clarification for effective labeling.

7. "Data security and compliance are secondary concerns."

Maintaining data privacy and security is critical in every annotation project, as sensitive data must adhere to compliance standards to protect individuals and organizations.

8. "Data is unbiased and won't need distribution adjustments."

Data bias is often unintentional and can evolve; continuously assessing and adjusting for fair representation and balanced distribution is essential for robust model performance.

Different Labeling Types in Images

Model Assisted Labeling

- 1. Off the shelf foundation models for kick start such as Gemini, Llama
- 2. Fine Tuning models
- 3. Active learning workflow for data selection
- 4. SAM and SAM2 for generic polygon annotation speed up

Other approaches to generate training data

Synthetic data generation

Other Use cases - GenAI based annotation for describing archived photographs

Session Time: 03:25s

Labelling Time: 05:45s

 \rightarrow

5

z

Thanks for Being Here!

Appreciate your queries

inkedin.com/puneetjindalisb

Twitter twitter.com/puneetjindalisb

651 N Bro

 (\mathbf{X})

651 N Broad St, Suite 201, Middletown, New Castle, DE, 19709, US