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Agenda

1. Life Cycle of App Development and some useful templates to document them
2. "Questions to Ask"  at each stage, with concrete examples of how internal teams responded to these 
questions, made decisions and dealt with the outcomes
3. Good practices when figuring out the problem that you're trying to address with the AI intervention - 
questions to ask, things to do, thresholds to obtain/maintain to go forward with the intervention
4. Some guiding principles to find answers or make choices
5. Assessing the impact of a solution using several metrics
6. How to develop feedback mechanisms iteratively and responsive to the end user
7. Putting together the appropriate, interdisciplinary team 
8. How to stay agile and flexible around AI resource planning as an organisation



Stakeholder Expectations

Manager
maximizes profit
= laying off ML teams

Product
fastest inference

ML team
highest accuracy

Sales
sells more ads

Fig. Source

https://stanford-cs329s.github.io/


Expectation Reality



But why?



Software 1.0 Software 2.0

Codified in Formal Language Weights & Biases
(parameters)

Developed by Programming Training

Specification PRD/SRD Data

Behaviour Deterministic Stochastic

Provably correct Provably wrong

Debuggable Hard to Debug

Verifiable Hard to verify

Explainable Hard to explain

Fixable Hard to fix

Idempotent Hard to reproduce

But why?



Most ML 
courses/books

Infrastructure

Interface

Data ML Models

System

Hardware

Think systems, not models. Think modeling, not models.
Combating this intellectual inertia is hard.

But why?



Semi-orthogonal sub-fields.

Fairness

XAI
Accuracy

But why?



1. Data Engineering
2. Model Engineering
3. Model DeploymentHidden Tech Debt

But why?



anything changes > everything changes
premature optimization of a “narrow|deep” problem is the curse to agility

prediction
space

user
context

decision
space

But why?



ML Life Cycle
Questions to Ask At Each Stage



Fig. Source

https://ml-ops.org/content/crisp-ml


Stage Project Lead

Discover the problem Identify “who”it is for?, “what” it is the problem (not the solution)?
What are the business metrics?
Can it be solved? Is AI necessary?
Data is from the past. Is that the future we want to extrapolate?
What is/will be the RoI? (put in real monetary terms of A/B).
What all data can be collected/ needs to be collected?

Build an MVP What is the scope which is simple (and testable) but not simpler.
Can it still be functional?

Pilot it What is the efficacy? Is it working? Verify assumptions from MVP. A good DoE helps.

Launch it Can we lunch, scale?
What needs to improve? Can it sustain? How to maintain it?

Broadly four stages. Iterate.



building on Data cards, Model cards, MLOps cards source

Purpose:
1. Help the solution & product team think thoroughly about the problem
2. Serves as communication aid 
3. With versions, can see the progress and evolution

Then:
1. Design Thinking to understand the problem 
2. Discover the problem, run through, develop a solution, test, iterate
3. Express it using Project Cards

Business Structure
1. What is the problem?
2. Who it is for?
3. Why it needs to be solved?
4. How will the solution look like (workflow 

and a mental model)? 
5. What will it lead to?
6. What are the risks?

ML Solution and Execution
1. What is the prediction problem?
2. How the objective will be 

measured?
3. How will it be tested?
4. Data: What kind, how and how 

much and what for?
5. What is the roadmap/plan?
6. What resources are needed?

ML Project Card: A QA format document

https://arxiv.org/abs/2204.01075
https://arxiv.org/abs/1810.03993
https://ml-ops.org/content/mlops-stack-canvas
https://mlsquare.github.io/ai-839/resources/project-card.html


Best Practices
and [some] guiding principles



Principles/ Heuristics:
1. Imperfect solution to a right problem > perfect solution to a wrong problem

a. Breadth-first. Not depth-first
2. Premature optimization is the curse of ML (and any field)

a. Start simple.
b. Simple, low-tech debt solution to complex but highly performant

3. No perfect launch. It is a journey.
a. Iterate quicker. Fail faster. 
b. Prioritise where to improve, not what you think is important

4. “So what” > Why > What > How (solution)
a. Insist on “So What?” seven times.
b. But we often start with a solution (or a technology)

5. Err on “data” side. 
a. Collect more but purpose driven (even if the purpose is anticipatory).

6. Outputs will be wrong
a. Abstain when not sure (can the UX support it?)

i. Models need not make decision all the time
ii. Abstention is a lever, in addition to “scope (functionality)”, “resources (time, compute, 

human)”, “quality”.
iii. Design is about tuning these four degrees of freedom via negotiation.

7. Not all decisions are equal. 
a. Cost-aware decision making.

Handle ambiguity NOT just business ambiguity, BUT user-experience ambiguity as well.



Metrics



- ML Metrics > Business Metrics
- Specific > Universal

- RMSE of a CYE model > Reduction in Risk by 10% > Profit by 5% > Improved Quality of Life > Happiness

Metrics Categorization

- Affordability: Is the service/product affordable
- Availability: Is the service/product available for “all” (scale) and “all the time” (reliability)
- Accessibility: Is the service/product accessible
- Coverage: Does the service/product has high coverage?

- Eg: a PHC offers a Screening solution but not Diagnostics! 
- # of auxiliary services in the suite, as a proxy

- Leverage
- How many new opportunities it can unlock
- The more foundational, context-free the service is, the more leverage it can 

generate

North Stars - Services

- Performance
- Inclusivity, Observability, Auditability
- Trustworthiness, Fairness
- Modularity, Extendability, Interoperability

North Stars - Solutions

Instrument and enable them
It is a journey from: ML to Impact, Specific to Universal, Direct (Observable) to Indirect, Individual to Societal.

dictated by how a 
solution is built?

dictated by where in 
action cascade it is?

dictated by who it is for

dictated by what is being 
built?



From Prediction Machines to Decision Engines

- ML is a glorified auto fill technique
- ML is a “means” to an “end’, not an “end” in itself
- ML is like any other piece of technology
- No distinction is made among {ML, AI, Statistics, Data Science}
- Predictions alone are not sufficient
- They must enable decision making
- Important to ask: “so what”
- Follow the trail of actions

who:

accessibility

availability, ..

how:

build quality

what:

coverage

where:

leverage

An overall score can be given to each solution, 
with different weightages to each dimension

One’s information is somebody else’s Intelligence
This is, perhaps, the only way to create/unlock value
Any project management decision must lead to 

unlocking or creating that value.



Feedback



Unknown unknowns

Describe the “context” as elaborately as possible

- Use “Dimensional Analysis” techniques from the Database world (knowledge engineering)

Log

- Instrument the telemetry and log

Analyze

- Usage (performance) by various dimensions

Improve

- [Business] Redefine the problem (label engineering, but we mostly focus on Models)
- [Marketing] Incentivise usage. Solve auxiliary problems which help the primary problem.
- [ML] Collect different type of data. Retrain.
- [Engg.] Retool. Add additional value-add functionality 

Build for observibility (telemetry)
Invest in MLOps (not very hard)



Team



Team: VERY multi-disciplinary

Discover MVP Pilot Launch

Architect

Product Owner

Data Scientist

ML Scientist

UX

Full Stack Engineer

SME

Marketing

Non-functional Reqs (eg Agility)

Label & Feature Eng., SIgnal Analysis, Baselines

Functional Reqs, Orchestration

Model dev, Metrics, Data Req.

HCD, Workflow, UQ Comm.

Utility, Cost, SLA, Ext., Mod. etc

Problem Selection, Alignment, UX, Comm., 
Validation

Change Making, Adoption Strategies, Awareness

Run Consult Advise
Product Owner role is KEY to success

Cares & Concerns



Team: Conway’s Law : Team structure surrogate to solution architecture

Architect

Product Owner

Data Scientist

ML Scientist

UX

Full Stack Engineer

SME

Marketing

Product Owner

UX

Data Scientist

Architect

ML Scientist

FS Scientist

SME

Marketing

H M L na

The org’s communication structure should reflect the data/information flow of the solution.



People (Team) > Problem > Process

Team:

Any other ordering is suboptimal



Agility



Deep empathy > Anticipation > Proactive Measures
How you build mostly dictates agility to react and respond

Principle of Variability

Identify sources of variation and rank them

most variable to least variable (known variability) > Abstract >  Customizability 

most uncertain to least uncertain (unknown variability) >  Building Blocks & Factories > Extensibility

Build for modularity (separation of concerns) and extensibility (new functionality)

Narrow with peripheral vision (for ML)

ML Problem should be as narrow as possible for it to work (narrow intelligence)

But it is at odds with agility

So, clear ML problem definition is important. But collecting “additional” metadata helps you pivot.

Often, this is difficult to iterate upon

Typically, it is UX (onboarding, value-add). Can be offloaded to implementation partner.



Let us bridge the gap between Expectation and Reality by
- Understanding how AI differs from traditional tech
- Following a breadth-first approach
- Exercising additional degrees of design freedom!
- Developing empathy for every stakeholder in the solution
- Assembling a multidisciplinary team
- Recognising that People [team] > Problem > Process

Expectation Reality

Make ML great again :)


