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Why Platform?

Platforms exist to enable the reuse of technology and address common problem statements
across multiple applications, ensuring productivity, efficiency, scalability, and standardization
throughout the organization



Why ML Platform?

ML platforms exist to enable the reuse of technology across different datasets, feature types,
and model types at various stages of the model lifecycle, thereby enhancing productivity and
efficiency



\ Engineering Challenges in Model Life Cycle
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Distributed Systems 101
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Distributed Storage
Distributed compute
Distributed Joins
Network Co-ordination
Fault Tolerance



Feature Engineering

Feature Generation at scale - offline and nearline
Training Data Generation on high dimensionality features
Feature Storage for offline and real time access

Feature consumption - latency constraints

Feature parity in offline, nearline and online



Model Training

Backprop and update of Gradients

Data Parallelism and Model parallelism
Synchronization of gradients in multiple nodes
Distributed Graph execution and update
Hyper parameter tuning

Fault tolerance and stragglers

Hardware utilization and optimizations



Model Serving

Running predictions at strict latency constraints
Server optimizations at scale.

Reusing model predictions across requests
Model compression and graph optimizations
Efficient execution of the graph

Batch execution of requests

Hardware utilization and optimization

Logging and monitoring



Model Architecture - MLP

Hidden layer 1 Hidden layer 2
Input layer
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Model Architecture - Two tower

Playlist embedding Candidate embedding

Candidate tower
(DNN)

Playlist features Track ID, Track features




Model Architecture - DCN
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Model Architecture - Transformer
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Tensor Flow

Flexible and scalable dataflow graph execution framework optimized for machine learning
operations and specialized hardware resources.



\ TensorFlow - DataFlow Graph




\ Tensorflow - BackProp




TensorFlow - Distributed Execution

single process
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TensorFlow - Data Parallelism

Parameter Device(s)

Device B

Asynchronous Data Parallelism




\ TensorFlow - Model Parallelism
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Keras

Simplified Model Definition

Base Layer and Model constructs
Graph Definition and Submission
Modular and Extensible
Predefined Layers and Operations



