
Edge Deployment - Model Compression
Srinivas Rana, PhD

Talk at IIIT-B
15th Oct 2024



Motivation

● Complexity of the problem being solved → complexity of the neural network model

● Model complexity

○ Models can also be memory intensive (10s to 100s of million parameters and more) - 

memory footprint

○ Powerful infrastructure required to perform inference in a reasonably acceptable amount 

of time - computational footprint

2



Motivation

Can we reduce these two footprints, i.e. reduce the model 

size and the number of computations, whilst retaining the 

model accuracy??

This strictly relates to inference alone and not training

3



Terminologies

4

Model 
Compression

Pruning Quantization

Sparsity



Pruning



Pruning

● DNNs are over-parameterized[1]

○ Many parameters encode the

same / similar information in the network

● Pruning eliminates these additional weights that do not contribute / add additional value to 

model performance

● Sparse tensors leading to fewer FLOPs → faster inference, smaller model

● Inherently regularised and hence more robust to noise

● Model drops in accuracy but can be recovered by finetuning

6

[1] Blier, Léonard & Ollivier, Yann. (2018). Do Deep Learning Models Have Too Many Parameters? An Information Theory Viewpoint. 



Pruning

● Pruning is seen in nature too! 

7

The Lancet Advancing Early Childhood Development: From Science to Scale



Pruning Strategies - Unstructured

● Pick out x % of the lowest magnitude weights and remove them

● This is known as unstructured pruning 

8



Pruning Strategies - Structured

● Pick out the lowest x % L1-norm for each row / column and remove them

● This is known as structured pruning 

9



Pruning Strategies - Block

● Pick out x % of the lowest L1-norm in 2D blocks and remove the entire block

● This is known as block pruning 

10

https://openai.com/blog/block-sparse-gpu-kernels/



Why structured

● Limited support for sparse matrices in deep learning frameworks which hinder 

deployment of unstructured sparse matrices

○ May slow down inference which can affect real time applications demanding high 

throughputs

● Tiled matrix multiplications in GPU Tensor Cores

○ Block based methods are suited to take

advantage of this architecture

11



Let’s Prune! 

12



Pruning Recipe

● Load pretrained model

● Choose which parameters to prune and choice of pruning method

● Prune to required percentage

● Fine tune model to regain any lost accuracy

● Plot a sparsity vs accuracy curve to visualise and determine the sweet spot!

● Can an equivalent smaller dense model give similar performance? 

13



Other Pruning Techniques

● Iterative Pruning

○ Prune, train, and repeat for n iterations 

○ Usually shown to beneficial for higher sparsity levels

● Non magnitude techniques 

○ Adaptive pruning - Monitor gradients and prune the weights corresponding to the gradients which move away more

○ Low rank matrix factorization 

● Pruning from scratch

○ Open research problem

○ No single right idea on what sort of pruning mask to start from

○ Imposing pruning on pretrained models underperforms anyway likely because the model is stuck in a local minimum, 

and the optimizer settings being used aren’t the best to get out of it

14



Quantization



Quantization

● Perform computations and store tensors using lower precision data types instead of the 

conventional FP32 precision

○ Typically INT8 but lower widths are within scope too

● FP32 → INT8

○ 4x reduction in size

16



Quantization

● Casting directly from higher precision to lower precision can lead to very large errors

● 2n values → n bits but in a ML context can lead to a lot of quantization noise

○ FP32 → INT8 : 6.8e38 → 256

17

Data Type Value % Deviation Memory (bits)

FP64 3.141592653589793 - 64

FP32 3.141592653 5.97e-9 32

FP16 3.1415 9.39e-4 16

INT8 3 4.5 8



Quantization

● Fortunately neural network model weights usually have a very small range close to 0

18

Alex Net Weight Distribution



Quantization

19

q_min q_max

f_maxf_min



Quantization Strategies

● Dynamic Quantization

○ Weights quantized, activations in FP and quantized at compute time

● Static Quantization

○ Weights quantized, activations quantized, calibration post training

● Quantization Aware Training (QAT)

○ Weights and activations quantized, quantization numerics modelled while training

20



Recipe



How to Proceed

● Examine your model architecture

○ Which layers need compression - bar charts are very helpful here!

○ Sanity check: Model file size == state_dict size

○ Use the target size to determine which layers need compression

● Pruning

○ L1, L2, structured, unstructured, … - sparsity vs accuracy curves to determine your accuracy ceilings

○ Own masks

○ Can smaller dense models with a similar number of parameters give you similar performance? 

● Quantization

○ Dynamic, static

○ QAT

22



Suggested Reading

● Pruning and Quantization for Deep Neural Network Acceleration: A Survey

● PyTorch Pruning

● OpenAI Block Sparsity

● GPU Architecture

● Tiled Matrix Multiplication

● Matrix Multiplication NVIDIA

● PyTorch Quantization

● Dynamic Quantization

● Static Quantization and QAT

● LLM Pruning

● MobileLLM

● The Era of 1-bit LLMs

23

https://arxiv.org/abs/2101.09671
https://pytorch.org/tutorials/intermediate/pruning_tutorial.html
https://openai.com/blog/block-sparse-gpu-kernels/
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://penny-xu.github.io/blog/tiled-matrix-multiplication
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://pytorch.org/blog/introduction-to-quantization-on-pytorch/
https://pytorch.org/tutorials/recipes/recipes/dynamic_quantization.html
https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html
https://arxiv.org/html/2406.00030v1
https://arxiv.org/abs/2402.14905
https://arxiv.org/abs/2402.17764


Thank you

www.wadhwaniai.org

Copyright © Wadhwani AI 2023 All rights reserved 
All data and information contained in this document are copyrighted by WIAI and may not be duplicated, copied, modified or 

otherwise adapted without our written permission. Your use of this document does not grant you any ownership to our content.
Wadhwani AI is a program of the AI Unit of National Entrepreneurship Network (NEN).


